Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 30
Filtre
1.
Leora I. Horwitz; Tanayott Thaweethai; Shari B. Brosnahan; Mine S. Cicek; Megan L. Fitzgerald; Jason D. Goldman; Rachel Hess; S. L. Hodder; Vanessa L. Jacoby; Michael R. Jordan; Jerry A. Krishnan; Adeyinka O. Laiyemo; Torri D. Metz; Lauren Nichols; Rachel E. Patzer; Anisha Sekar; Nora G. Singer; Lauren E. Stiles; Barbara S. Taylor; Shifa Ahmed; Heather A. Algren; Khamal Anglin; Lisa Aponte-Soto; Hassan Ashktorab; Ingrid V. Bassett; Brahmchetna Bedi; Nahid Bhadelia; Christian Bime; Marie-Abele C. Bind; Lora J. Black; Andra L. Blomkalns; Hassan Brim; Mario Castro; James Chan; Alexander W. Charney; Benjamin K. Chen; Li Qing Chen; Peter Chen; David Chestek; Lori B. Chibnik; Dominic C. Chow; Helen Y. Chu; Rebecca G. Clifton; Shelby Collins; Maged M. Costantine; Sushma K. Cribbs; Steven G. Deeks; John D. Dickinson; Sarah E. Donohue; Matthew S. Durstenfeld; Ivette F. Emery; Kristine M. Erlandson; Julio C. Facelli; Rachael Farah-Abraham; Aloke V. Finn; Melinda S. Fischer; Valerie J. Flaherman; Judes Fleurimont; Vivian Fonseca; Emily J. Gallagher; Jennifer C. Gander; Maria Laura Gennaro; Kelly S. Gibson; Minjoung Go; Steven N. Goodman; Joey P. Granger; Frank L. Greenway; John W. Hafner; Jenny E. Han; Michelle S. Harkins; Kristine S.P. Hauser; James R. Heath; Carla R. Hernandez; On Ho; Matthew K. Hoffman; Susan E. Hoover; Carol R. Horowitz; Harvey Hsu; Priscilla Y. Hsue; Brenna L. Hughes; Prasanna Jagannathan; Judith A. James; Janice John; Sarah Jolley; S. E. Judd; Joy J. Juskowich; Diane G. Kanjilal; Elizabeth W. Karlson; Stuart D. Katz; J. Daniel Kelly; Sara W. Kelly; Arthur Y. Kim; John P. Kirwan; Kenneth S. Knox; Andre Kumar; Michelle F. Lamendola-Essel; Margaret Lanca; Joyce K. Lee-lannotti; R. Craig Lefebvre; Bruce D. Levy; Janet Y. Lin; Brian P. Logarbo Jr.; Jennifer K. Logue; Michele T. Longo; Carlos A. Luciano; Karen Lutrick; Shahdi K. Malakooti; Gail Mallett; Gabrielle Maranga; Jai G. Marathe; Vincent C. Marconi; Gailen D. Marshall; Christopher F. Martin; Jeffrey N. Martin; Heidi T. May; Grace A. McComsey; Dylan McDonald; Hector Mendez-Figueroa; Lucio Miele; Murray A. Mittleman; Sindhu Mohandas; Christian Mouchati; Janet M. Mullington; Girish N Nadkarni; Erica R. Nahin; Robert B. Neuman; Lisa T. Newman; Amber Nguyen; Janko Z. Nikolich; Igho Ofotokun; Princess U. Ogbogu; Anna Palatnik; Kristy T.S. Palomares; Tanyalak Parimon; Samuel Parry; Sairam Parthasarathy; Thomas F. Patterson; Ann Pearman; Michael J. Peluso; Priscilla Pemu; Christian M. Pettker; Beth A. Plunkett; Kristen Pogreba-Brown; Athena Poppas; J. Zachary Porterfield; John G. Quigley; Davin K. Quinn; Hengameh Raissy; Candida J. Rebello; Uma M. Reddy; Rebecca Reece; Harrison T. Reeder; Franz P. Rischard; Johana M. Rosas; Clifford J. Rosen; Nadine G. Rouphae; Dwight J. Rouse; Adam M. Ruff; Christina Saint Jean; Grecio J. Sandoval; Jorge L. Santana; Shannon M. Schlater; Frank C. Sciurba; Caitlin Selvaggi; Sudha Seshadri; Howard D. Sesso; Dimpy P. Shah; Eyal Shemesh; Zaki A. Sherif; Daniel J. Shinnick; Hyagriv N. Simhan; Upinder Singh; Amber Sowles; Vignesh Subbian; Jun Sun; Mehul S. Suthar; Larissa J. Teunis; John M. Thorp Jr.; Amberly Ticotsky; Alan T. N. Tita; Robin Tragus; Katherine R. Tuttle; Alfredo E. Urdaneta; P. J. Utz; Timothy M. VanWagoner; Andrew Vasey; Suzanne D. Vernon; Crystal Vidal; Tiffany Walker; Honorine D. Ward; David E. Warren; Ryan M. Weeks; Steven J. Weiner; Jordan C. Weyer; Jennifer L. Wheeler; Sidney W. Whiteheart; Zanthia Wiley; Natasha J. Williams; Juan P. Wisnivesky; John C. Wood; Lynn M. Yee; Natalie M. Young; Sokratis N. Zisis; Andrea S. Foulkes; - Recover Initiative.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.05.26.23290475

Résumé

Importance: SARS-CoV-2 infection can result in ongoing, relapsing, or new symptoms or other health effects after the acute phase of infection; termed post-acute sequelae of SARS-CoV-2 infection (PASC), or long COVID. The characteristics, prevalence, trajectory and mechanisms of PASC are ill-defined. The objectives of the Researching COVID to Enhance Recovery (RECOVER) Multi-site Observational Study of PASC in Adults (RECOVER-Adult) are to: (1) characterize PASC prevalence; (2) characterize the symptoms, organ dysfunction, natural history, and distinct phenotypes of PASC; (3) identify demographic, social and clinical risk factors for PASC onset and recovery; and (4) define the biological mechanisms underlying PASC pathogenesis. Methods: RECOVER-Adult is a combined prospective/retrospective cohort currently planned to enroll 14,880 adults aged [≥]18 years. Eligible participants either must meet WHO criteria for suspected, probable, or confirmed infection; or must have evidence of no prior infection. Recruitment occurs at 86 sites in 33 U.S. states, Washington, DC and Puerto Rico, via facility- and community-based outreach. Participants complete quarterly questionnaires about symptoms, social determinants, vaccination status, and interim SARS-CoV-2 infections. In addition, participants contribute biospecimens and undergo physical and laboratory examinations at approximately 0, 90 and 180 days from infection or negative test date, and yearly thereafter. Some participants undergo additional testing based on specific criteria or random sampling. Patient representatives provide input on all study processes. The primary study outcome is onset of PASC, measured by signs and symptoms. A paradigm for identifying PASC cases will be defined and updated using supervised and unsupervised learning approaches with cross-validation. Logistic regression and proportional hazards regression will be conducted to investigate associations between risk factors, onset, and resolution of PASC symptoms. Discussion: RECOVER-Adult is the first national, prospective, longitudinal cohort of PASC among US adults. Results of this study are intended to inform public health, spur clinical trials, and expand treatment options.


Sujets)
COVID-19 , Syndrome respiratoire aigu sévère
2.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.10.17.22281178

Résumé

Background: The effectiveness of fluvoxamine to shorten symptom duration or prevent hospitalization among outpatients in the US with mild to moderate symptomatic coronavirus disease 2019 (COVID-19) is unclear. Design: ACTIV-6 is an ongoing, decentralized, double-blind, randomized, placebo-controlled platform trial testing repurposed medications in outpatients with mild to moderate COVID-19. A total of 1288 non-hospitalized adults aged >=30 years with confirmed COVID-19 experiencing >=2 symptoms of acute infection for <=7 days prior to randomization were randomized to receive fluvoxamine 50 mg or placebo twice daily for 10 days. The primary outcome was time to sustained recovery, defined as the third of 3 consecutive days without symptoms. Secondary outcomes included composites of hospitalization or death with or without urgent or emergency care visit by day 28. Results: Of 1331 participants randomized (mean [SD] age, 48.5 [12.8] years; 57% women; 67% reported receiving at least 2 doses of a SARS-CoV-2 vaccine), 1288 completed the trial (n=614 placebo, n=674 fluvoxamine). Median time to recovery was 13 days (IQR 12-13) in the placebo group and 12 days (IQR 11-14) in the fluvoxamine group (hazard ratio [HR] 0.96, 95% credible interval [CrI] 0.86-1.07; posterior probability for benefit [HR>1]=0.22). Twenty-six participants (3.9%) in the fluvoxamine group were hospitalized or had urgent or emergency care visits compared with 23 (3.8%) in the placebo group (HR 1.1, 95% CrI 0.6-1.8; posterior probability for benefit [HR<1]=0.340). One participant in the fluvoxamine group and 2 in the placebo group were hospitalized; no deaths occurred. Adverse events were uncommon in both groups. Conclusions: Treatment with fluvoxamine 50 mg twice daily for 10 days did not improve time to recovery, compared with placebo, among outpatients with mild to moderate COVID-19. These findings do not support the use of fluvoxamine at this dose and duration in patients with mild to moderate COVID-19.


Sujets)
COVID-19 , Maladie aigüe , Mort
3.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.05.26.22275279

Résumé

Background: The limited variation observed among SARS-CoV-2 consensus sequences makes it difficult to reconstruct transmission linkages in outbreak settings. Previous studies have recovered variation within individual SARS-CoV-2 infections but have not yet measured the informativeness of within-host variation for transmission inference. Methods: We performed tiled amplicon sequencing on 307 SARS-CoV-2 samples from four prospective studies and combined sequence data with household membership data, a proxy for transmission linkage. Results: Consensus sequences from households had limited diversity (mean pairwise distance, 3.06 SNPs; range, 0-40). Most (83.1%, 255/307) samples harbored at least one intrahost single nucleotide variant (iSNV; median: 117; IQR: 17-208), when applying a liberal minor allele frequency of 0.5% and prior to filtering. A mean of 15.4% of within-host iSNVs were recovered one day later. Pairs in the same household shared significantly more iSNVs (mean: 1.20 iSNVs; 95% CI: 1.02-1.39) than did pairs in different households infected with the same viral clade (mean: 0.31 iSNVs; 95% CI: 0.28-0.34), a signal that increases with increasingly liberal thresholds. Conclusions: Although only a subset of within-host variation is consistently shared across likely transmission pairs, shared iSNVs may augment the information in consensus sequences for predicting transmission linkages.


Sujets)
Syndrome respiratoire aigu sévère
4.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.01.25.22269670

Résumé

SARS-CoV-2-specific CD4+ T cells are likely important in immunity against COVID-19, but our understanding of CD4+ longitudinal dynamics following infection and specific features that correlate with the maintenance of neutralizing antibodies remains limited. We characterized SARS-CoV-2-specific CD4+ T cells in a longitudinal cohort of 109 COVID-19 outpatients. The quality of the SARS-CoV-2-specific CD4+ response shifted from cells producing IFN{gamma} to TNF+ from five days to four months post-enrollment, with IFN{gamma}-IL21-TNF+ CD4+ T cells the predominant population detected at later timepoints. Greater percentages of IFN{gamma}-IL21-TNF+ CD4+ T cells on day 28 correlated with SARS-CoV-2 neutralizing antibodies measured seven months post-infection ({rho}=0.4, P=0.01). mRNA vaccination following SARS-CoV-2 infection boosted both IFN{gamma} and TNF producing, spike protein-specific CD4+ T cells. These data suggest that SARS-CoV-2-specific, TNF-producing CD4+ T cells may play an important role in antibody maintenance following COVID-19.


Sujets)
COVID-19
5.
researchsquare; 2022.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1233038.v1

Résumé

The widespread presence of autoantibodies in acute infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is increasingly recognized, but the prevalence of autoantibodies in infections with organisms other than SARS-CoV-2 has not yet been reported. We used protein arrays to profile IgG autoantibodies from 317 samples from 268 patients across a spectrum of non-SARS-CoV-2 infections, many of whom were critically ill with pneumonia. Anti-cytokine antibodies (ACA) were identified in > 50% of patients infected with non-SARS-CoV-2 viruses and other pathogens, including patients with pneumonia attributed to bacterial causes. In cell-based functional assays, some ACA blocked binding to surface receptors for type I interferons (Type I IFN), granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukin-6 (IL-6). Autoantibodies against traditional autoantigens associated with connective tissue diseases (CTDs) were also commonly observed in these cohorts, including newly-detected antibodies that emerged in longitudinal samples from patients infected with influenza. We conclude that autoantibodies, some of which are functionally active, may be much more prevalent than previously appreciated in patients who are symptomatically infected with diverse pathogens.


Sujets)
Infections à coronavirus , Pneumopathie infectieuse , COVID-19
6.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.12.30.21268540

Résumé

Multiple SARS-CoV-2 variants that possess mutations associated with increased transmission and antibody escape have arisen over the course of the current pandemic. While the current vaccines have largely been effective against past variants, the number of mutations found on the Omicron (B.1.529) spike appear to diminish the efficacy of pre-existing immunity. Using pseudoparticles expressing the spike of several SARS-CoV-2 variants, we evaluated the magnitude and breadth of the neutralizing antibody response over time in naturally infected and in mRNA-vaccinated individuals. We observed that while boosting increases the magnitude of the antibody response to wildtype (D614), Beta, Delta and Omicron variants, the Omicron variant was the most resistant to neutralization. We further observed that vaccinated healthy adults had robust and broad antibody responses while responses were relatively reduced in vaccinated pregnant women, underscoring the importance of learning how to maximize mRNA vaccine responses in pregnant populations. Findings from this study show substantial heterogeneity in the magnitude and breadth of responses after infection and mRNA vaccination and may support the addition of more conserved viral antigens to existing SARS-CoV-2 vaccines.


Sujets)
COVID-19
7.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.11.22.21266690

Résumé

Background Favipiravir is an oral, RNA-dependent RNA polymerase inhibitor with in vitro activity against SARS-CoV2. Despite limited data, favipiravir is administered to patients with COVID-19 in several countries. Methods We conducted a phase 2 double-blind randomized controlled outpatient trial of favipiravir in asymptomatic or mildly symptomatic adults with a positive SARS-CoV2 RT-PCR within 72 hours of enrollment. Participants were randomized 1:1 to receive placebo or favipiravir (1800 mg BID Day 1, 800mg BID Days 2-10). The primary outcome was SARS-CoV-2 shedding cessation in a modified intention-to-treat (mITT) cohort of participants with positive enrollment RT-PCRs. Using SARS-CoV-2 deep sequencing, we assessed favipiravir’s impact on mutagenesis. Results From July 8, 2020 - March 23, 2021, we randomized 149 participants with 116 included in the mITT cohort. The participants’ mean age was 43 years (SD 12.5) and 57 (49%) were women. We found no difference in time to shedding cessation by treatment arm overall (HR 0.76 favoring placebo, 95% confidence interval [CI] 0.48 – 1.20) or in sub-group analyses (age, sex, high-risk comorbidities, seropositivity or symptom duration at enrollment). We observed no difference in time to symptom resolution (initial: HR 0.84, 95% CI 0.54 – 1.29; sustained: HR 0.87, 95% CI 0.52 – 1.45). We detected no difference in accumulation of transition mutations in the viral genome during treatment. Conclusions Our data do not support favipiravir use at commonly used doses in outpatients with uncomplicated COVID-19. Further research is needed to ascertain if higher doses of favipiravir are effective and safe for patients with COVID-19. Trial registration number NCT04346628 Summary In this phase 2 double-blind randomized controlled outpatient trial of favipiravir in asymptomatic or uncomplicated patients with COVID-19, we found no difference in time to shedding cessation or time to symptom resolution by treatment arm.


Sujets)
COVID-19
8.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.09.20.21263527

Résumé

BackgroundAn immunodiagnostic assay that sensitively detects a cell-mediated immune response to SARS-CoV-2 is needed for epidemiological investigation and for clinical assessment of T cell-mediated immune response to vaccines, particularly in the context of emerging variants that might escape antibody responses. MethodsThe performance of a whole blood interferon-gamma (IFN-{gamma}) release assay (IGRA) for the detection of SARS-CoV-2 antigen-specific CD4 and CD8 T cells was evaluated in COVID-19 convalescents tested serially up to 10 months post-infection and in healthy blood donors. SARS-CoV-2 IGRA was applied in contacts of households with index cases. Freshly collected blood in the lithium heparin tube was left unstimulated, stimulated with a SARS-CoV-2 peptide pool, and stimulated with mitogen. ResultsThe overall sensitivity and specificity of IGRA were 84.5% (153/181; 95% confidence interval [CI] 79.0-89.0) and 86.6% (123/142; 95% CI;80.0-91.2), respectively. The sensitivity declined from 100% (16/16; 95% CI 80.6-100) at 0.5-month post-infection to 79.5% (31/39; 95% CI 64.4-89.2) at 10 months post-infection (P<0.01). The IFN-{gamma} response remained relatively robust at 10 months post-infection (3.8 vs. 1.3 IU/mL, respectively). In 14 households, IGRA showed a positivity rate of 100% (12/12) and 65.2% (15/23), and IgG of 50.0% (6/12) and 43.5% (10/23) in index cases and contacts, respectively, exhibiting a difference of +50% (95% CI +25.4-+74.6) and +21.7% (95% CI, +9.23-+42.3), respectively. Either IGRA or IgG was positive in 100% (12/12) of index cases and 73.9% (17/23) of contacts. ConclusionsThe SARS-CoV-2 IGRA is a useful clinical diagnostic tool for assessing cell-mediated immune response to SARS-CoV-2. Key pointsSARS-CoV-2 immunodiagnostics are needed to identify infected individuals in order to understand the transmission dynamics of emerging variants and to assess vaccine response. Interferon-gamma release assay maintains sensitivity 10 months post-infection in convalescents and detects more household contacts than IgG.


Sujets)
COVID-19
9.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.08.27.21262687

Résumé

The great majority of SARS-CoV-2 infections are mild and uncomplicated, but some individuals with initially mild COVID-19 progressively develop more severe symptoms. Furthermore, mild to moderate infections are an important contributor to ongoing transmission. There remains a critical need to identify host immune biomarkers predictive of clinical and virologic outcomes in SARS-CoV-2-infected patients. Leveraging longitudinal samples and data from a clinical trial of Peginterferon Lambda for treatment of SARS-CoV-2 infected outpatients, we used host proteomics and transcriptomics to characterize the trajectory of the immune response in COVID-19 patients within the first 2 weeks of symptom onset. We define early immune signatures, including plasma levels of RIG-I and the CCR2 ligands (MCP1, MCP2 and MCP3), associated with control of oropharyngeal viral load, the degree of symptom severity, and immune memory (including SARS-CoV-2-specific T cell responses and spike (S) protein-binding IgG levels). We found that individuals receiving BNT162b2 (Pfizer-BioNTech) vaccine had similar early immune trajectories to those observed in this natural infection cohort, including the induction of both inflammatory cytokines (e.g. MCP1) and negative immune regulators (e.g. TWEAK). Finally, we demonstrate that machine learning models using 8-10 plasma protein markers measured early within the course of infection are able to accurately predict symptom severity, T cell memory, and the antibody response post-infection.


Sujets)
Syndrome respiratoire aigu sévère , COVID-19
10.
researchsquare; 2021.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-847082.v1

Résumé

The great majority of SARS-CoV-2 infections are mild and uncomplicated, but some individuals with initially mild COVID-19 progressively develop more severe symptoms. Furthermore, there is substantial heterogeneity in SARS-CoV-2-specific memory immune responses following infection. There remains a critical need to identify host immune biomarkers predictive of clinical and immunologic outcomes in SARS-CoV-2-infected patients. Leveraging longitudinal samples and data from a clinical trial in SARS-CoV-2 infected outpatients, we used host proteomics and transcriptomics to characterize the trajectory of the immune response in COVID-19 patients within the first 2 weeks of symptom onset. We identify early immune signatures, including plasma RIG-I levels, early interferon signaling, and related cytokines (CXCL10, MCP1, MCP-2 and MCP-3) associated with subsequent disease progression, control of viral shedding, and the SARS-CoV-2 specific T cell and antibody response measured up to 7 months after enrollment. We found that several biomarkers for immunological outcomes are shared between individuals receiving BNT162b2 (Pfizer–BioNTech) vaccine and COVID-19 patients. Finally, we demonstrate that machine learning models using 7-10 plasma protein markers measured early within the course of infection are able to accurately predict disease progression, T cell memory, and the antibody response post-infection in a second, independent dataset.


Sujets)
COVID-19
11.
researchsquare; 2021.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.pex-1601.v1

Résumé

COVID-19 patients shed SARS-CoV-2 RNA in stool, sometimes well after their respiratory infection has cleared. In our benchmarking study, we recommend a standardized protocol for the preservation, extraction and detection of viral RNA from stool. This protocol includes a preservative, viral RNA extraction steps, and PCR-based quantification methods to maximize yield and detection of SARS-CoV-2 RNA. Our protocol takes advantage of commercially available reagents and equipment to maximize ease of access and consistency across studies. Additionally, we apply an attenuated bovine coronavirus vaccine as a spike-in control, and synthetic RNA standards to improve standardization and reliability of the assay. While we recommend both ddPCR and RT-qPCR-based assays, we acknowledge that ddPCR may be prohibitively expensive due to the necessity of specialized equipment and reagents. This protocol was developed with a focus on SARS-CoV-2 RNA, but may apply to other coronaviruses as well. We estimate that this protocol takes between 6 to 8 hours total to quantify the viral RNA load in a fecal sample.


Sujets)
COVID-19
12.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.07.20.21260892

Résumé

Using face mask bioaerosol sampling, we found substantial variation between individuals in SARS-CoV-2 copies exhaled over a 15-minute period, which moderately correlated with nasal swab viral load. Talking was associated with a median of 2 log10 greater exhaled viral copies. Exposure varies substantially between individuals but may be risk stratified by nasal swab viral load and whether the exposure involved conversation.

13.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.05.25.445649

Résumé

Serologic markers that predict severe COVID-19 disease trajectories could enable early medical interventions and reduce morbidity and mortality. We found that distinct features of IgG Fab and Fc domain structures were present within three days of a positive test that predicted two separate disease trajectories in a prospective cohort of patients with COVID-19. One trajectory was defined by early production of neutralizing antibodies and led to mild disease. A distinct trajectory, characterized by an initial period of mild symptoms followed by rapid progression to more severe outcomes, was predicted by the absence of early neutralizing antibody responses with concomitant production of afucosylated IgGs. Elevated frequencies of monocytes expressing the receptor for afucosylated IgGs, Fc{gamma}RIIIa (CD16a), were an additional antecedent in patients with the more severe outcomes. In mechanistic studies, afucosylated immune complexes in the lung triggered an inflammatory infiltrate and cytokine production that was dependent on CD16a. Finally, in healthy subjects, mRNA SARS-CoV-2 vaccination elicited neutralizing antibodies that were enriched for Fc fucosylation and sialylation and distinct from both infection-induced trajectories. These data show the importance of combined Fab and Fc domain functions in the antiviral response, define an early antibody signature in people who progressed to more severe COVID-19 outcomes and have implications for novel therapeutic strategies targeting Fc{gamma}RIIIa pathways.


Sujets)
COVID-19 , Déficit en IgG
14.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.04.26.21256131

Résumé

BackgroundGiven the persistence of viral RNA in clinically recovered COVID-19 patients, subgenomic RNAs (sgRNA) have been reported as potential molecular viability markers for SARS-CoV-2. However, few data are available on their longitudinal kinetics, compared with genomic RNA (gRNA), in clinical samples. MethodsWe analyzed 536 samples from 205 patients with COVID-19 from placebo-controlled, outpatient trials of Peginterferon Lambda-1a (Lambda; n=177) and favipiravir (n=359). Nasal swabs were collected at three time points in the Lambda (Day 1, 4 and 6) and favipiravir (Day 1, 5, and 10) trials. N-gene gRNA and sgRNA were quantified by RT-qPCR. To investigate the decay kinetics in vitro, we measured gRNA and sgRNA in A549ACE2+ cells infected with SARS-CoV-2, following treatment with remdesivir or DMSO control. ResultsAt six days in the Lambda trial and ten days in the favipiravir trial, sgRNA remained detectable in 51.6% (32/62) and 49.5% (51/106) of the samples, respectively. Cycle threshold (Ct) values for gRNA and sgRNA were highly linearly correlated (Pearsons r=0.87) and the rate of increase did not differ significantly in Lambda (1.36 cycles/day vs 1.36 cycles/day; p = 0.97) or favipiravir (1.03 cycles/day vs 0.94 cycles/day; p=0.26) trials. From samples collected 15-21 days after symptom onset, sgRNA was detectable in 48.1% (40/83) of participants. In SARS-CoV-2 infected A549ACE2+ cells treated with remdesivir, the rate of Ct increase did not differ between gRNA and sgRNA. ConclusionsIn clinical samples and in vitro, sgRNA was highly correlated with gRNA and did not demonstrate different decay patterns to support its application as a viability marker. SummaryWe observed prolonged detection of subgenomic RNA in nasal swabs and equivalent decay rates to genomic RNA in both longitudinal nasal swabs and in remdesivir-treated A549ACE2+ cells infected with SARS-CoV-2. Taken together, these findings suggest that subgenomic RNA from SARS-CoV-2 is comparably stable to genomic RNA and that its detection is therefore not a more reliable indicator of replicating virus.


Sujets)
COVID-19
15.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.04.10.21255250

Résumé

COVID-19 patients shed SARS-CoV-2 viral RNA in their stool, sometimes well after they have cleared their respiratory infection. This feature of the disease may be significant for patient health, epidemiology, and diagnosis. However, to date, methods to preserve stool samples from COVID patients, and to extract and quantify viral RNA concentration have yet to be optimized. We sought to meet this urgent need by developing and benchmarking a standardized protocol for the fecal detection of SARS-CoV-2 RNA. We test three preservative conditions for their ability to yield detectable SARS-CoV-2 RNA: OMNIgene-GUT, Zymo DNA/RNA shield kit, and the most common condition, storage without any preservative. We test these in combination with three extraction kits: the QIAamp Viral RNA Mini Kit, Zymo Quick-RNA Viral Kit, and MagMAX Viral/Pathogen Kit. Finally, we also test the utility of two detection methods, ddPCR and RT-qPCR, for the robust quantification of SARS-CoV-2 viral RNA from stool. We identify that the Zymo DNA/RNA shield collection kit and the QiaAMP viral RNA mini kit yield more detectable RNA than the others, using both ddPCR and RT-qPCR assays. We also demonstrate key features of experimental design including the incorporation of appropriate controls and data analysis, and apply these techniques to effectively extract viral RNA from fecal samples acquired from COVID-19 outpatients enrolled in a clinical trial. Finally, we recommend a comprehensive methodology for future preservation, extraction and detection of RNA from SARS-CoV-2 and other coronaviruses in stool.


Sujets)
COVID-19
16.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.03.05.21253011

Résumé

BackgroundThe vast majority of SARS-CoV-2 infections are uncomplicated and do not require hospitalization, but contribute to ongoing transmission. Our understanding of the clinical course of uncomplicated COVID-19 remains limited. MethodsWe detailed the natural history of uncomplicated COVID-19 among 120 outpatients enrolled in a randomized clinical trial of Peginterferon Lambda. We characterized symptom trajectory and clusters using exploratory factor analysis, assessed predictors of symptom resolution and cessation of oropharyngeal viral shedding using Cox proportional hazard models, and evaluated associations between symptoms and viral shedding using mixed effects linear models. ResultsHeadache, myalgias and chills peaked at day 4 after symptom onset; cough peaked on day 9. Two distinct symptom cluster trajectories were identified; one with mild, upper respiratory symptoms, and the other with more severe and prolonged inflammatory symptoms. The median time to symptom resolution from earliest symptom onset was 17 days (95% CI 14-18). Neither enrollment SARS-CoV-2 IgG levels (Hazard ratio [HR] 1.88, 95% CI 0.84-4.20) nor oropharyngeal viral load at enrollment (HR 1.01, 95% CI 0.98-1.05) were significantly associated with the time to symptom resolution. The median time to cessation of viral shedding was 10 days (95% CI 8-12), with higher SARS-CoV-2 IgG levels at enrollment associated with hastened resolution of viral shedding (HR 3.12, 95% CI 1.4-6.9, p=0.005). Myalgia, joint pains, and chills were associated with a significantly greater odds of oropharyngeal SARS-CoV-2 RNA detection. ConclusionsIn this outpatient cohort, inflammatory symptoms peaked early and were associated with ongoing SARS-CoV-2 replication. SARS-CoV-2 antibody levels were associated with more rapid viral shedding cessation, but not with time to symptom resolution. These findings have important implications for COVID-19 screening approaches and clinical trial design.


Sujets)
COVID-19
17.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.01.27.21250559

Résumé

Coronavirus Disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), is associated with a wide range of clinical manifestations, including autoimmune features and autoantibody production. We developed three different protein arrays to measure hallmark IgG autoantibodies associated with Connective Tissue Diseases (CTDs), Anti-Cytokine Antibodies (ACA), and anti-viral antibody responses in 147 hospitalized COVID-19 patients in three different centers. Autoantibodies were identified in approximately 50% of patients, but in <15% of healthy controls. When present, autoantibodies largely targeted autoantigens associated with rare disorders such as myositis, systemic sclerosis and CTD overlap syndromes. Anti-nuclear antibodies (ANA) were observed in ~25% of patients. Patients with autoantibodies tended to demonstrate one or a few specificities whereas ACA were even more prevalent, and patients often had antibodies to multiple cytokines. Rare patients were identified with IgG antibodies against angiotensin converting enzyme-2 (ACE-2). A subset of autoantibodies and ACA developed de novo following SARS-CoV-2 infection while others were transient. Autoantibodies tracked with longitudinal development of IgG antibodies that recognized SARS-CoV-2 structural proteins such as S1, S2, M, N and a subset of non-structural proteins, but not proteins from influenza, seasonal coronaviruses or other pathogenic viruses. COVID-19 patients with one or more autoantibodies tended to have higher levels of antibodies against SARS-CoV-2 Nonstructural Protein 1 (NSP1) and Methyltransferase (ME). We conclude that SARS-CoV-2 causes development of new-onset IgG autoantibodies in a significant proportion of hospitalized COVID-19 patients and are positively correlated with immune responses to SARS-CoV-2 proteins.


Sujets)
Syndrome respiratoire aigu sévère , Sclérodermie systémique , Myosite , COVID-19
18.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.01.29.428535

Résumé

The SARS-CoV-2 variant carrying the Spike protein mutation G614 was first detected in late January 2020 and within a few months became the dominant form globally. In the months that followed, many studies, both in vitro and in animal models, showed that variants carrying this mutation were more infectious and more readily transmitted than the ancestral Wuhan form. Here we investigate why a recently published study by van Dorp et al. failed to detect such higher transmissibility of the G614 variant using homoplasy-based methods. We show that both low diversity and recombination confound the methods utilized by van Dorp et al. and significantly decrease their sensitivity. Furthermore, though they claim no evidence of recombination in their dataset, we and several other studies identify a subset of the sequences as recombinants, possibly enough to affect their statistic adversely.

19.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.01.29.428808

Résumé

Covid-19 is the most devastating pandemic of the past 100 years. A zoonotic transfer presumably at a wildlife market introduced the causative virus, SARS-CoV-2 (sarbecovirus; beta-coronavirus), to humans in late 2019. Meanwhile, the mechanistic details of the infection process have been largely elucidated, and structural models explain binding of the virial spike to the human cell surface receptor ACE2. Yet, the evolutionary trajectory that gave rise to this pathogen is poorly understood. Here we scan SARS-CoV-2 protein sequences in-silico for innovations along the evolutionary lineage starting with the last common ancestor of coronaviruses. Substantial differences in the sets of proteins encoded by SARS-CoV-2 and viruses outside sarbecovirus, and in their domain architectures, indicate divergent functional demands. By contrast, sarbecoviruses themselves are almost fully conserved at these levels of resolution. However, profiling spike evolution on the sub-domain level using predicted linear epitopes reveals that this protein was gradually reshaped within sarbecovirus. The only epitope that is private to SARS-CoV-2 overlaps with the furin cleavage site. This lends phylogenetic support to the hypothesis that a change in strategy facilitated the zoonotic transfer of SARS-CoV-2 and its success as a human pathogen. Upon furin cleavage, spike switches from a "stealth mode" where immunodominant ACE2 binding epitopes are largely hidden to an "attack mode" where these epitopes are exposed. The resulting reinforcement of ACE2 binding extends the window of opportunity for cell entry. SARS-CoV-2 variants fine-tuning this mode switch will be particularly threatening as they optimize immune evasion.


Sujets)
COVID-19
20.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.01.29.428847

Résumé

In the context of searching for COVID-19 related scientific literature, we present an information retrieval methodology for effectively finding relevant publications for different information needs. We discuss different components of our architecture consisting of traditional information retrieval models, as well as modern neural natural language processing algorithms. We present recipes to better adapt these components to the case of an infodemic, where, from one hand, the number of publications has an exponential growth and, from the other hand, the topics of interest evolve as the pandemic progresses. The methodology was evaluated in the TREC-COVID challenge, achieving competitive results with top ranking teams participating in the competition. In retrospect to this challenge, we provide additional insights with further useful impacts.


Sujets)
COVID-19
SÉLECTION CITATIONS
Détails de la recherche